
CPS311: COMPUTER ORGANIZATION

An Example of A MIPS Program Using Procedures and Parameters
	

/*
 * This module implements a procedure (solve) that computes the roots of a
 * quadratic equation that has integer roots, returning them to the caller.
 * The arguments are the coefficients of the quadratic equation (input) plus
 * the two roots (output). It also returns a status code to the caller:
 *
 *	 0 - Computation successful and root values are valid
 *	 1 - Roots are not integers (roots values are truncated)
 *	 2 - Roots are complex (root values invalid)
 *	 3 - Overflow occurred during computation (root values invalid)
 *
 * Register usage:
 *
 *	 Parameters: 	$4 = A (by value)
 *	 	 	 	 	 $5 = B (by value)
 *	 	 	 	 	 $6 = C (by value)
 *	 	 	 	 	 $7 = address to receive first root
 *	 	 	 	 	 $8 = address to receive second root
 *	 Return value:	$2
 *	 Temporaries:	$2, $3
 *
 * *** This version of the program does not incorporate overflow handling
 * *** code. It will crash if overflow occurs in computing the discriminant.
 *
 * R. Bjork - 2/99
 *
 */
	 # The .section assembler directive is used to break a program into
	 # sections.	 Executable code goes in the .text section.
	

	 	 .section	.text
	

	 # Each procedure needs to have its entry point declared as a label; if
	 # it is called from outside this module its entry point must also be
	 # declared as a global symbol (for the linker).	 The name should
	 # also be declared by a .ent directive (for the debugger).
	

	 	 .ent		 solve
	 	 .globl	 	 solve
	

	 solve:
	

	 # Upon entry, a non-leaf procedure must allocate a frame on the
	 # stack, and save its parameters and return address, as well as any
	 # callee-saved registers it intends to use.	 (None in this case)
	 # The frame may also be used to hold local variables. (None in this
	 # case) The size of the frame must be a multiple of 16
	

	 # The .frame and .mask directives provides information for the debugger
	 # about the structure of the frame.	
	

	 # The first argument of .frame indicates what register is used to point
	 # to the frame (either the stack pointer or some other register set
	 # aside for that purpose); the second gives the size of the frame, and
	 # the third argument indicates what register holds the return address
	 # for the procedure (almost always $31).
	

	 	 .frame	 $sp, 32, $31

1

	 # The mask directive specifies what registers are saved in the stack
	 # frame, and where the register save area begins relative to the
	 # start of the frame. The first argument is a bit mask with 1's
	 # in bit positions corresponding to registers that are saved. Only
	 # registers in the callee saved set ($16 and up) normally appear in
	 # the mask.	 (The only register this procedure needs to save in this
	 # group is the return address - $31). The second argument indicates
	 # the offset from the high end of the frame ($sp + size) to the slot
	 # where the highest numbered register specified in the mask is saved.
	 # In this case, $31 is saved 24 prior to the high end of the frame,
	 # so the offset is -24.
	

	 	 .mask	 0x80000000, -24
	

	 # The code that follows actually creates the frame and saves the
	 # registers in it.	
	

	 	 addi	$sp, -32
	

	 	 sw	 $31, 8($sp)
	 	 sw	 $4, 12($sp)
	 	 sw	 $5, 16($sp)
	 	 sw	 $6, 20($sp)
	 	 sw	 $7, 24($sp)
	 	 sw	 $8, 28($sp)
	 	
	 /* Compute the discriminant (put in $2). Registers already contain
	 *	 the correct parameters
	 */
	

	 	 jal compute_discr
	

	 	 /* Test for negative discriminant */
	

	 	 slt $3, $2, $0
	 	 beq $3, $0, d_ok	 	 # Non-negative, so go on
	 	 addi $2, $0, 2	 	 # Status value for complex roots
	 	 b	 fini		 	 # Exit
	

	 d_ok:
	

	 /* Compute square root of discriminant (put in $2) */
	

	 	 add $4, $2, $0	 	 # Put discriminant in $4 as parameter
	 	 jal compute_sqrt	 	 # $2 now contains sqrt(discriminant)
	

	 /* Compute the roots */
	

	 	 lw	 $4, 12($sp) 	 	 # First parameter = A
	 	 lw	 $5, 16($sp) 	 	 # Second parameter = B
	 	 add $6, $0, $2	 	 # Third parameter = sqrt(discriminant)
	 	 jal compute_roots	# $2 and $3 now contain the roots
	

	 /* Save the roots in location specified by caller */
	

	 	 lw	 $7, 24($sp) 	 	 # Restore return parameter addresses
	 	 lw	 $8, 28($sp)
	 	 sw	 $2, 0($7)	 	 # Store first root
	 	 sw	 $3, 0($8)	 	 # Store second root
 	

2

	 /* Check to be sure they are integers - if not, status code will
	 * indicate that a warning about truncation is needed.
	 */
	

	 	 lw	 $4, 12($sp) 	 	 # First parameter = A
	 	 lw	 $5, 16($sp) 	 	 # Second parameter = B
	 	 lw	 $6, 20($sp) 	 	 # Third parameter = C
	 	 add $7, $2, $0	 	 # Fourth parameter = first root
	 	 add $8, $3, $0	 	 # Fifth parameter = second root
	 	 jal test_roots	 	 # $2 contains 0 if roots OK, 1 if not
	

	 /* Exit protocol for solve.	 When this point is reached, $2 must
	 * contain the status code to be returned to the caller
	 *
	 */
	

	 # Upon exit, a non-leaf procedure must restore its return address and
	 # any callee-saved registers from the stack frame and then deallocate
	 # the frame. (The parameters need not be restored).
	

	 fini:
	

	 	 lw	 $31, 8($sp)
	 	 addi $sp, 32
	

	 # Return to caller
	

	 	 jr	 $31
	

	 # Each procedure must end with a .end directive
	

	 	 .end	solve
	

	 /*
	 * The following local routine computes the discriminant.
	 *
	 * Parameters:	 	 $4 = A
	 *	 	 	 	 	 $5 = B
	 *	 	 	 	 	 $6 = C
	 * Return value:	 $2
	 */
	

	 # As a local routine, its name does not need to be declared global, and
	 # as a leaf routine, it does not need to save anything on the stack.
	 # A frame directive with a size of 0 indicates no frame.
	

	 	 .ent	compute_discr
	 	 .frame	 $sp, 0, $31
	

	 compute_discr:
	

	 	 mulo	$2, $5, $5	 # Pseudoinstruction. Assembler generates code to
	 	 	 	 	 	 	 # put 32-bit product in $2; check for overflow and
	 	 	 	 	 	 	 # raise an exception if one occurs. #2 = B*B
	 	 addi	$3, $0, 4	 # $3 = 4
	 	 mulo	$3, $3, $4	 # $3 = 4*A - overflow checked
	 	 mulo	$3, $3, $6	 # $3 = 4*AC - overflow checked
	 	 sub $2, $2, $3	 	 # $2 = B*B-4AC = discriminant - overflow checked

	 	 jr	 $31

	 	 .end	compute_discr

3

	 /*
	 * The following local routine computes the integer square root of the
	 * discriminant.
	 *
	 * Parameter:		 $4 = discriminant
	 * Return value:	 $2 = integer square root (truncated if need be)
	 *
	 * Method: Successive testing of individual bits, starting with
	 *	 2^15 and working down to 2^0
	 */
	

	 	 .ent	compute_sqrt
	 	 .frame	 $sp, 0, $31
	

	 compute_sqrt:
	

	 	 add $2, $0, $0	 # guess at square root 0 - initially 0
	 	 ori $3, $0, 0x8000	 # bit mask for trial bit
	

	 sqrt_loop:
	

	 	 or	 $2, $2, $3	 # or in trial bit
	 	 mul $5, $2, $2	 # test to see if guess is now too big
	 	 slt $5, $4, $5
	 	 beq $5, $0, bit_ok
	 	 xor $2, $2, $3	 # set trial bit back to 0
	 	 bit_ok:
	 	 srl $3, $3, 1	# move on to next bit
	 	 bne $3, $0, sqrt_loop
	

	 	 jr	 $31
	

	 	 	 .end	compute_sqrt
	

	 /*
	 * The following local routine computes the roots.	
	 *
	 * Parameters:	 	 $4 = A
	 *	 	 	 	 	 $5 = B
	 *	 	 	 	 	 $6 = sqrt(discriminant)
	 * Return values:	$2 and $3 = two roots
	 *
	 */
	

	 	 .ent	compute_roots
	 	 .frame	 $sp, 0, $31
	

	 compute_roots:
	

	 	 add $4, $4, $4	 # $4 = 2*A
	 	 sub $5, $0, $5	 # $5 = -B - overflow checked
	 	 sub $2, $5, $6	 # $2 = -B - sqrt(discriminant) - oveflow checked
	 	 div $2, $2, $4	 # $2 = first root
	 	 add $3, $5, $6	 # $3 = -B + sqrt(discriminant) - overflow checked
	 	 div $3, $3, $4	 # $3 = second root
	

	 	 jr	 $31
	

	 	 .end	compute_roots
 	

4

	 /*
	 * The following local routine tests the roots to be sure they are
	 * integers
	 *
	 * Parameters:	 	 $4 = A
	 *	 	 	 	 	 $5 = B
	 *	 	 	 	 	 $6 = C
	 *	 	 	 	 	 $7 = first root
	 *	 	 	 	 	 $8 = second root
	 * Return value:	 $2 = 0 if roots are integers, 1 if not
	 *
	 * Method - verify that A * sum of roots = -B, A * product = C
	 *
	 */
	

	 	 .ent	test_roots
	 	 .frame	 $sp, 0, $31
	

	 test_roots:
	

	 	 add $2, $7, $8	 # $2 = sum of roots
	 	 mul $2, $2, $4	 # $2 = A * sum of roots
	 	 add $2, $2, $5	 # $2 will be 0 iff A*sum of roots = -B
	 	 bne $2, $0, not_int
	 	 mul $2, $7, $8	 # $2 = product of roots
	 	 mul $2, $2, $4	 # $2 = A * product of roots
	 	 sub $2, $2, $6	 # $2 will be 0 iff A*prod of roots = C
	 	 bne $2, $0, not_int
	

	 	 jr	 $31	 	 	 # Return with $2 = 0 - roots OK
	

	 not_int:
	

	 	 addi $2, $0, 1
	 	 jr	 $31	 	 	 # Return with $2 = 1 - roots not OK
	

	 	 .end test_roots

5

